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plus acetone system: Test of fluctuation-isomorphism theory
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The phase-separation temperature has been measured as a function of pressure and composition for
the poly(styrene) plus acetone system. From the experimental data, the coexistence curves at different
pressures have been interpolated. The analysis of the curves in terms of simple scaling equations leads to
values of the critical exponent 8 which, near the double critical point, seem to be larger than twice the
single-critical-point value 0.325. Contrary to what was expected from previous work [F. Monroy et al.,
Phys. Rev. B 47, 630 (1993)], the use of the thermodynamic field suggested by Malomuzh and Veytsman
[N. P. Malomuzh and B. A. Veytsman, Phys. Lett. A 136, 239 (1989)] and simple scaling did not describe
the data with a constant 8=0.325 for all the isobars. However, the use of an effective 3.4 given by a
theory that assumes a fluctuation-isomorphism hypothesis describes very accurately the crossover from
single- to double-critical-point behavior, with a universal 8=0.325 critical exponent. The theory pre-
dicts that the region in which simple scaling is valid shrinks, even beyond the experimentally accessible
range of this work, in the proximity of the double critical point.

PACS number(s): 05.70.Fh, 64.60.Fr

I. INTRODUCTION

It has been well established that near-critical-point
(CP) fluids present a universal behavior described by a set
of critical exponents characteristic of what is called a
universality class [1]. Binary mixtures near a liquid-
liquid equilibrium critical point belong to the three-
dimensional (3D) Ising class [2], together with ferromag-
nets and pure fluids near a liquid-gas critical point.

According to the renormalization group, the order pa-
rameter AA near a CP is described by [3]

AL=Ag —A, =B,e’+ Bl T2+ B,f 20+ - (1)

where the critical exponents take the universal values
=0.325 and A=0.5 in the Ising class, and € is the ther-
modynamic field that describes the distance to the CP,
and is usually expressed as e=|(T — T.)/T.|, with T, be-
ing the critical temperature. The B;’s are called the criti-
cal amplitudes, and the order parameter AX is defined,
for the case of mixtures, as a difference of concentrations
of the coexisting phases, R and L referring to the right
and left branches of the coexistence curve, respectively.
The CP is located in the phase diagram at (T, ).

The application of an external field such as the pres-
sure p is not expected to drive the system outside the 3D
Ising class since it does not affect the symmetry of its
Hamiltonian [4]. Therefore p should not have any effect
upon the critical exponents, although it will, in general,
affect the critical amplitudes [5] and the location of the
critical point, which will describe a trajectory called the
critical line (CL), (T, (p),A.(p)), in the coexistence sur-
face.
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Even though there is a correspondence between each
universality class and the values of the critical exponents,
they also depend on the curvature of the CL. In most
fluid mixtures both T, and A, vs p are almost straight
lines [6]; however, for reentrant phase transitions [7]
there are regions of the phase diagram in which this is no
longer true and therefore one must expect some change in
the critical exponents with p. This situation occurs as
one approaches the double critical points [8] (DCP’s).
Griffiths and Wheeler [9] have discussed this issue using a
geometrical picture of the approach to the CP and con-
cluded that if the curvature of the CL is described by an
exponent n the critical exponents renormalize in such a
way that, asymptotically close to the DCP, they take the
value nfBgcp, the subscript SCP referring to the typical
Ising-like single CP. The conclusions of the geometrical
approach have been later confirmed by other theoretical
treatments such as the decorated lattice model [10] or a
model based on the catastrophe theory [11].

During the past few years there has been strong activi-
ty in order to confirm that on approaching a DCP the CL
was quadratic [12] and that the critical exponents double
near the DCP [13]. However, less work has been devoted
to study how the critical exponents change from the
value near a SCP to a DCP [14]. A general observation
from these studies is that the renormalization process
starts far from the DCP and thus the critical exponents
take values significantly different from the SCP values.

We have recently carried out an experimental study of
the renormalization of the exponent S for the lower criti-
cal solution point transition (LCST) of the 2-butanol plus
water system as the DCP is approached by changing p
[15]. Our results are in reasonable agreement with those
of Prafulla, Narayanan, and Kumar [14], from resistivity
measurements, and seem to indicate that instead of €, a
new thermodynamic field e,={(T =T (T —=T,)/
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Ty T, | should be used in Eq. (1). T, and T; refer to the
upper critical solution point transition (UCST) and LCST
of the reentrant phase transition, respectively. Notice
that near the DCP, | T, —T; | —0 and ey;— €2, which is
equivalent to say that in Eq. (1) Bpcp—2B5cp- A recent
description of the behavior of systems near DCP given by
Malomuzh and Veytsman [16] leads to ep as the natural
field for describing the approach to a DCP. Kumar and
co-workers [14] have also found that constant Ising-like
exponents are suitable when ey is used.

Malomuzh and Veytsman’s theory [16] assumes that
the algebra of strongly fluctuating variables is isomorphic
to the algebra of the variables describing /-g (liquid-gas)
isolated CP of the phase transition in the Ising model and
describes the renormalization of the critical exponent 8
by

B
— — e, e)+g ¥ (e,€)+0(gd) , 2
Bscp

where
. Inletel 3t 3eget e
0™ Inle] > ' (eo+e€)nlel
12 Tu_TI

=_T , = 3

b4 l% Dpcp » €o 2Tpep 3)

The I;’s are the coefficients of the equation that describes
the CL [15]:

T, Tpcp=l(p —poce)*+1L,(p—ppcp) » (4)

with /, <</, in most cases, thus ensuring the parabolic
behavior in the neighborhood of the DCP. In Eq. (2), the
subscript eff refers to the value of the critical exponent
that one would obtain by fitting experimental data corre-
sponding to given values of €, to a simple scaling equa-
tion, i.e., Eq. (1) with B; =0, i > 0. Equations (2)-(4) indi-
cate that the renormalization of 8 will depend on the dis-
tance to the DCP measured by two variables €, and € and
on the shape of the CL measured by /, and /,.

In our previous work [15] we assumed the validity of
simple scaling as in most of the previous work dealing
with the study of the renormalization of critical ex-
ponents as the DCP is approached [12,13]. However,
Egs. (2) and (3) introduce some doubts on such an as-
sumption as it can be easily seen for the data of the 2-
butanol plus water system [15]. A given value of €, cor-
responds to each isobar, i.e., the coexistence curve at a
given pressure; such a value is calculated according to
Eq. (2) using the CL reported in Ref. [15]. The arrows in
Fig. 1(a) show in the € axis the values of ¢, that corre-
spond to the isobars of 101.5 bar (very close to the pres-
sure of the DCP) and 170 bar.

For each of the values of ¢,, Fig. 1 shows the curves
Bes/Bscp calculated according to Egs. (2)-(4). It can be
observed that B.5/Bscp cannot be considered as constant
except perhaps extremely close to the CP of each isobar
(e—0). More specifically it appears that for the range
1073 <€ <1072, for which simple scaling is usually valid
for binary mixtures [2], B.4/Bscp shows a non-negligible €
dependence which seems to be larger for the p =101.5
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bar isobar, i.e., closer to the DCP (ppcp =100.710.1 bar
for 2-butanol plus water [15]).

The behavior predicted by the Malomuzh-Veytsman
theory [16] introduces therefore a further complexity in
the analysis of thermophysical properties near CP as the
DCP approaches, and the use of a value .4 independent
of € in many of the work published so far suggests that a
work aiming to clarify this point is worthwhile and will
be the object of this paper, focusing our attention on the
exponent f3.

The 2-butanol plus water system was studied near the
LCST [15] and the mass fraction was found to be suitable
for relatively symmetrical coexistence curves. The use of
more unsymmetrical curves might enhance the above-
mentioned effect, therefore polymer-solvent systems
might be good candidates for testing the predictions of
the Malomuzh-Veytsman theory [16]. Zeman and Patter-
son [17] have studied the effect of molecular weight and
pressure upon the phase diagram of a poly(styrene) plus
acetone (PS+ AC) system; their results indicate that for a
polymer of molecular weight M, ~20000, the system
might have a DCP at relatively low pressure and approxi-
mately 340 K. We have studied the coexistence curve of
this system near the UCST.

2.0
(a)

1

P=101.5 bar
(€o= 4.6-107)

P =170 bar
(€0 =4.3%102)
1.0 | | | LJ * |
105 1073 v
€
20
(b)
Bett
Bscp P =10 bar
(€.=5.1=1072)
15
P =100 bar
(,=19-107")
1.0 1 | 1 ‘ 1
10% 103 1072 0! .
FIG. 1. Dependence of the ratio B.g/Bscp On €

[=I(T—T.,)/T.|], given by Egs. (2) and (3), for the binary sys-
tems (a) 2-butanol plus water and (b) polystyrene plus acetone.
The arrows indicate the value of ¢, for each isobar.
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The rest of this paper is organized as follows. Section
IT gives some details of the experimental procedure and
the results are presented in Sec. III. Section IV discusses
the behavior of the critical exponent 3 and the adequacy
of the Malomuzh-Veytsman theory [16] to describe our
results. Finally, Sec. V summarizes the conclusions.

II. EXPERIMENT

The acetone used in the experiments was Carlo Erba
RPE with an initial purity greater than 99% and was
kept over molecular sieves (3 A). The poly(styrene) sup-
plied by Polysciencies is a standard of molecular weight
M, ~20000 and very low polydispersity M, /M, =1.03,
where M, and M, are the molecular and number average
molecular weights, respectively.

The experimental setup is similar to that used by

Sassen et al. [18]. The sample was contained in a glass
cell, trapped with mercury, and magnetically stirred.
The whole cell was contained in a stainless-steel auto-
clave. Water was used as pressure transmission fluid.
The sample was illuminated from outside and observed
through sapphire windows. The autoclave was placed in-
side a water thermostat whose temperature stability, *1
mK over 20-h periods, was obtained with a Tronac PTC-
41 controller and a Tronac TCP-25-S probe. The temper-
ature was measured with a quartz thermometer Hewlett-
Packard HP-2804-A, frequently calibrated against a galli-
um melting point standard YSF-17402. The temperature
scale agrees with the ITS-90 to within +0.01 K. The
pressure was generated and measured as in a previous
work [15], but using a Maywood P-102 transducer. The
precision in p was +0. 1 bar for the range of the measure-
ments reported in this work.

TABLE 1. Experimental isopleths of polystyrene plus acetone system. w stands for the weight fraction of polystyrene.

P(bar) T (C) P(ar) T(C) Pa) T(C  Pa) T(EC) Pba) T(C  Par) T (0
w =0.1015 w=0.1136 w =0.1250 3601 42334 242 47127 277 44.045
1126 21651 1310 20071 1371 20.020 32 44337 19.1  49.633 229 45992
92.5 25025 1002 25006 1047 25010 26.5 46338 147 52117 187 48.040
67.3  30.087 740 30077 778 30020 223 48342 L1 54.604 149 50014
450 35123 522 35064 563 35020 185 50375 7.9 57.116 1.3 52,031
293 40.044 358 40017 395 40070 155 52.332 53 59.608 81  54.005
238 42015 300 42053 337 42010 126 54.305 34 61.635 53 56.048
188 44.005 245 44.067 283 44.000 9.9  56.303
138 46.034 195 46.044 235 46.040 7.7 5839
9.3 48016 158 48.034 19.1  48.030
5.8 50.069 1.6 50.051 159 50.030 w =0.1985 w =0.2021 w =0.2075
28 52023 88  52.019 125 52040 1402 20025  139.1 20026  137.1  20.080
59 54.027 9.5 54020 1062 25022 1053 25039 1039  25.021
792 30.005 783 30.046 774 30053
w =0.1325 w =0.1415 w=0.1517 572 35.048 563 35.095 553 35.075
107.5 25010 1043 25890 1461  19.660 475 3765 390 40.023 382 40014
80.5 30011 823 29.868 1115 24.661 398 40.038 330 42026 322 42019
58.5  35.005 600  34.938 839 29.632 338 42044 276 44.041 268 44.028
409 40014 430  39.840 61.8  34.664 285 44042 29 46017 218 46.056
350 42014 370 41.859 438 39711 236  45.999 18.6  48.044 176 48.030
302 44.008 320 43.846 379 41.643 193 48.043 148 50.007 137 50016
251 46.006 271 45.859 325 43664 155 50.026 114 52029 103 52047
209 48.032 229 47871 276 45.682 1.9 52012 83 54075 72 54023
178 50.021 189  49.866 235 47671 89 54013 57 56.039 48 56077
149 52,040 158 51.885 200 49.682 64 56.028
115 54.007 128 53.886 165 51.643 39 58053
87  56.007 10.1  55.895 135 53671
62 58011 78 57.888 1.0 55.690 w=0.2197 w =0.2275 w =0.2392
42 60.055 58 59.902 9.0 57660 1327  20.026 93.5 25392 1227 20.037
30 62016 44 61874 99.9  25.023 69.9  30.061 911  25.065
28 63.880 734 29.997 489  35.024 659  30.066
519  35.009 329 40017 457 35.026
348 40.055 259 42535 206 40.067
w=0.1616 w=0.1743 w=0.1912 291 42,023 201 45.004 241 42,050
1560 18317 1436  19.898 1415 20014 239 44.037 152 47.281 192 43.994
1200 23369 1046 25775 1069  25.046 193 45.998 101 50.034 148 46.060
90.9  28.358 837 29.610 794 30.009 151 48.036 62 52510 10.9 48029
66.8  33.342 617  34.636 569 35061 114 50.025 30 55002 73 50043
479 38340 43.9  39.679 39.1 40060 g1 52010 45 52027
414 40.326 303 44.467 332 42,040 50  54.052
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FIG. 2. Some experimental isopleths of the polystyrene plus
acetone system near its double critical point. The composition
w of each of them is 0.1136 (A), 0.1415 (O), and 0.2197 (O).

As previously [6,15], the method followed to obtain the
coexistence curve is a point-by-point determination in
which the phase separation temperature is measured as a
function of pressure for each composition, rending p-T
curves or isopleths. The mixtures were prepared by
weight just before use, with a precision of +0.01 mg, thus
the uncertainty in the weight fraction was less than
+0.0001. All the samples were thoroughly degassed.

III. RESULTS

Table I shows the experimental data. In general the
isopleths are almost straight lines, except in the low-
pressure region where, as it can be observed in Fig. 2,
there is a marked curvature as expected in the proximity
of a DCP [20]. It is unfortunate that due to experimental
difficulties it was not possible to measure the high-
temperature branch of the isopleths. For those mixtures

1407
330
320
g /A’A’m‘ﬁ\\\
=310 M
300 — M
290 I |
0.1 0.2 03

FIG. 3. Coexistence curves of the polystyrene plus acetone
system at different pressures [10.0 bar (O), 20.0 bar (V), 30.0
bar (A), 50.0 bar (O), and 100.0 bar (0)]. The composition
variable w is the weight fraction of polystyrene.

far from that of the DCP the extrapolation of the iso-
pleths to p =0.1 MPa leads to values in good agreement
with the previous measurements at low pressure [17].

For each composition the data were fitted to

P (MPa)=a +bs+cs?+ds? (5

where s =[T (K)]—273.15. The constants a—-d were
obtained using a method based in the maximum-
likelihood principle, and are collected in Table II togeth-
er with the mean standard deviation of the variables. By
interpolating in Eq. (5), the coexistence curves at con-
stant pressure can be easily obtained. Figure 3 shows
several isobars; it can be observed that, as expected, there

TABLE II. Parameters of fittings of the experimental isopleths of the polystyrene plus acetone sys-
tem in terms of a cubic polynomial [Eq. (5)]. The standard deviations on pressure and temperature are

estimated from these fittings.

w a b 10c 10%d o(p) (bar) o(T) (K)
0.1015 305.52 —11.82 1.48 —6.27 0.3 0.003
0.1136 317.23 —12.04 1.50 —6.30 0.2 0.002
0.1250 337.15 —13.23 1.79 —8.59 0.2 0.001
0.1325 346.66 —13.65 1.86 —8.91 0.3 0.001
0.1415 347.71 —13.57 1.83 —8.62 0.2 0.001
0.1517 352.44 —13.90 1.90 —9.15 0.2 0.002
0.1616 352.58 —13.93 1.92 —9.37 0.1 0.001
0.1743 347.46 —13.56 1.84 —8.81 0.2 0.002
0.1912 355.12 —14.26 1.99 —10.00 0.1 0.001
0.1985 346.80 —13.72 1.87 —9.15 0.2 0.002
0.2021 345.39 —13.70 1.88 —9.17 0.1 0.002
0.2075 339.07 —13.32 1.79 —8.51 0.2 0.002
0.2197 337.03 —13.62 1.89 —9.46 0.1 0.001
0.2275 320.09 —12.80 1.74 —8.37 0.1 0.001
0.2392 318.48 —13.07 1.83 —9.20 0.1 0.001
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is a clear change in the shape of the coexistence curve,
which passes from nearly parabolic at low pressures to al-
most cubic at higher pressures as shown by the 3 values;
this change will be discussed below.

IV. DISCUSSION

The experimental data have been analyzed taken A =w,
the weight fraction of PS, to define the order parameter.
As in our previous work [15], the analysis of the coex-
istence curve was carried out using

A=A t(B/2)P+ Aqe (6)

where A, stands for the critical composition and 4, is
the amplitude of the diameter of the coexistence curve.
Table III collects the parameters characteristic of the
different isobars.

The couples (T, ,,p), together with Eq. (4) lead to
Tpcp=343.01£0.07 K, Ppcp=3.33+0.05  bar,
/,=—5.39%0.01, and /, =0.1013+0.0007, which are not
very different from those of the 2-butanol plus water sys-
tem [15]. Figure 4 shows the S values, from Table III,
versus AT =|Ty,— T, |, confirming the previous results in
the sense that B> Bgcp even for large values of AT. How-
ever, for the PS+ AC system it can be seen that 5> 2Bscp
for small AT ’s, i.e., close to the DCP, which introduces
some doubts on the validity of the previous analysis,
which is otherwise quite standard in the literature.

According to the Malomuzh-Veytsman model [16], the
order parameter should behave, close enough to the CL,
as

Araél , (7)

with $=0.325. We have analyzed our isobars with the
field ey instead of € and leaving 3 as a fitting parameter.
The results obtained for 8 are shown in Fig. 4, where it
can be observed that instead of a constant value, 8 in-
creases as AT is decreased, while at AT large enough S
takes values smaller than Bgcp. The apparent failure of
Eq. (7) contrasts with its ability to describe the data of 2-
butanol plus water and light scattering results of Prafulla,
Narayanan, and Kumar [14] on the system of 3-
methylpyridine, water, and heavy water Egs. (2) and (3)
suggest that the value of 8 in Eq. (7) should depend upon
the value of € in addition to €,; therefore we have used
Eq. (7) with 3 given by Egs. (2)-(4) and found that it is
possible to describe the experimental data with values of
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0.7 T T
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FIG. 4. Loop size dependence AT=(Ty—T.) of B for
different values of € [=|(T—T.)/T.|]. The (O) are the values
given by the fit with Eq. (6) and the (A) the fit with Eq. (7).

Y*<0.1 (notice that 3 is not fitted). Figure 1(b) shows the
ratio B.g/Bscp for two isobars of PS+AC according to
Egs. (2)-(4), confirming the strong dependence on €
within the experimental range of the present study.

These results indicate that the influence of a DCP on
the critical behavior must be taken into account not only
on the change of the critical exponents but also on the
range of validity of simple scaling law, which might de-
crease below the experimentally accessible range for
small €,. Figure 4 shows the calculated values of B as a
function of ¢, for different values of €; it can be observed
that even for € < 10™*, which is not usually attainable in
most of the experimental work described in the literature,
it seems that the e—0 limit, i.e., simple scaling, has not
been reached for the PS+ AC system even for the smaller
|T —T,| experimental values.

We have carried out the same analysis with the 2-
butanol plus water system [15], with similar conclusions,
although in this case the use of Eq. (7) with $=0.325
leads to reasonably good results.

Similar results have been obtained using an extended
scaling description for the order parameter

AL=B,€e8 +B ef Y, (8)

TABLE III. Analysis of the interpolated isobars of the polystyrene plus acetone system in terms of

Eq. (6). These fittings have been performed assuming the uncertainties o(7)=+0.02 K and

o(w)==£0.002.

p (bar) T, (K) w, B/2 A, B %
10.0 329.76+0.03 0.1526+0.0005 1.50%0.10 0.77+0.04 0.649+0.016 0.05
20.0 322.688+0.011 0.1567+0.0006 0.98+0.06 0.78+0.06 0.495+0.014 0.09
30.0 317.876+0.010 0.1584+0.0009 0.83+0.08 0.78+0.11 0.44+0.02 0.21
50.0 319.912+0.002 0.1601+0.0009 0.71+0.06 0.79+0.14 0.380+0.017 0.18

100.0 299.801+0.003 0.161+0.003 0.66+0.07 0.9+0.2 0.348+0.018 0.27
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17.5 MPa

(a)

0.5 ' 1
1075 1074 1073

€1y

FIG. 5. Relative weight of the simple scaling term in Eq. (8)
for (a) 2-butanol plus water and (b) polystyrene plus acetone.

with 8=0.325 and A=0.5. In all the cases it has been
possible to obtain variances y? < 1 showing that Eq. (8) is
able to describe the results with a random distribution of
the residuals. Equation (7) has been recently used by Pra-
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fulla, Narayanan, and Kumar [19] in the analysis of their
light scattering data for 3-methylpyridine plus water
doped with NaCl. Figure 5 shows the relative weight of
the simple-scaling term in Eq. (8) both for 2-butanol plus
water and for poly(styrene) plus acetone. It can be ob-
served that while for the first system simple scaling ac-
counts for 80% of AA even for the isobar which is closest
to the DCP, the situation is rather different for the poly-
mer system even if €7y has been used. This stresses the
need of using Egs. (2)-(4) in analyzing the critical data
near a DCP.

The use of volume fraction instead of weight fraction
to define the order parameter does not lead to any quali-
tative difference in the above discussion.

V. CONCLUSIONS

The coexistence curves of the PS+AC system have
been obtained as a function of the distance of the DCP.
Even though the CPL shows a parabolic curvature in the
proximity of the DCP, the values of the critical exponent
P obtained when the usual simple scaling equation and
the field € are used are larger than the single critical point
value $=0.325 for very large values of €, and even larger
than twice that value for low €,’s. The use of simple scal-
ing and the field ey does not lead to a constant value of
B=0.325, but to a critical exponent that increases as the
DCP is approached and seems to take values f3<0.325
for large €, The use of an effective B4 given by the
theory of Malomuzh and Veytsman describes very accu-
rately the crossover from single- to double-critical-point
behavior, with a universal $=0.325 critical exponent.
The theory predicts that the region in which simple scal-
ing is valid shrinks as the DCP is approached.
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